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What is diffusive flow?



Hamiltonian systems describe incompressible flow driven by a Hamiltonian:

In a Hamiltonian system, a density f is transported according to the equation

∂f

∂t
=

∂

∂zi
(−V if). (1)

The transporting velocity field and the Hamiltonian functional are connected by

V i = Πij
∂

∂zj
δH
δf

, H[f ] =

∫
fH. (2)

The components V i of the velocity field are the same thing as the equations of
motion for a single particle with a Hamiltonian H and a Poisson matrix Πij .

Being Hamiltonian, the vector field V i is incompressible. It also conserves the
Hamiltonian along the flow due to the antisymmetry of the Poisson matrix:

V i
∂

∂zi
δH
δf

=
∂

∂zi
δH
δf

Πij
∂

∂zj
δH
δf

= 0 (3)
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Diffusive systems describe compressible flow driven by an entropy:

Consider a transport equation

∂f

∂t
=

∂

∂zi

(
Dij

∂f

∂zj

)
. (4)

Rewrite Dij∂jf = fDij∂j ln f and define the entropy functional

S[f ] = −
∫
f ln f. (5)

The transport equation can now be written as

∂f

∂t
=

∂

∂zi

(
−V if

)
. (6)

where the velocity field is given by the entropic flow

V i = Dij
∂

∂zj
δS
δf
. (7)

Along an entropic flow, the entropy is monotonically increased because the diffusion
matrix Dij has to be at least positive-semidefinite, if not positive-definite:

V i
∂

∂zi
δS
δf

=
∂

∂zi
δS
δf
Dij

∂

∂zj
δS
δf
≥ 0 (8)
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Entropic flow can be discretized with particles, deterministically:

Consider particle coordinates, weights (Z;W ) = {(zp;wp)}Np=1, and a distribution

fh(z, t) =
N∑
p=1

wpδ(z − zp(t)). (9)

A functional A[f ] evaluated with respect to fh becomes a function of the coordinates

A[fh] = A(Z;W ) (10)

Varying this relation leads to the discrete form of the functional derivative

∂

∂zi
δA[fh]

δf

∣∣∣
z=zp

=
1

wp

∂A(Z;W )

∂zip
(11)

Evaluating the entropic flow at the particle position can be interpreted as an equation
of motion for the particle zp, and results in the following deterministic expression

dzip

dt
= Dij(zp)

1

wp

∂S(Z;W )

∂zjp
(12)

This guarantees that the discrete entropy never is decreased:

dS(Z;W )

dt
=
∑
p

∂S(Z;W )

∂zip

dzip

dt
=
∑
p

1

wp

∂S(Z;W )

∂zip
Dij(zp)

∂S(Z;W )

∂zjp
≥ 0 (13)
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But isn’t the entropy badly behaving with respect to a delta distribution?

One can approximate and define a regularized entropy functional where the density
function is convoluted with respect to a radial basis function ψε according to

Sε[f ] ≡ S[ψε ∗ f ]. (14)

Utilizing the convolution strategy, a well behaving discrete entropy becomes

Sε(Z;W ) = −
∫ (∑

p

wpψε(z − zp(t))
)

ln
(∑

p

wpψε(z − zp(t))
)
dz. (15)

Alternatively, one could consider the fh to be a collection radial basis functions
instead of δ-functions, effectively requiring no regularization. This would, however,
open a can of worms and imply changes to the Hamiltonian parts of field theories.
Let’s just leave that part untouched for we know that variational geometric algorithms
already work well for discretizing, e.g., the Vlasov–Maxwell action integral.
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The regularization trick is not my invention

The trick has been used previously. See for example the papers

• Degond, Mustieles, (1989), doi:10.1137/0911018

• Russo, (1990), doi:10.1002/cpa.3160430602

• Carrillo, Graig, Patacchini, (2019) doi:10.1007/s00526-019-1486-3

• Carrillo, Hu, Wang, Wu, (2020), doi:10.1016/j.jcpx.2020.100066

The reference [Carrillo et al, (2020), doi:10.1016/j.jcpx.2020.100066] is also the first
paper that uses the regularization trick to discretize the Landau operator
deterministically with marker particles. The paper succeeds in reproducing
continuous-time conservation laws and monotonic entropy production but falls short of
these properties in discrete time. These issues can be fixed and, next, I show how.
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Particle approximation of the Landau
collision operator



Laundau operator as entropic flow:

The single-species Landau collision operator is given by

C[f ] = ν
∂

∂vi

∫
Qij(v − v)

(
f(v)

∂f

∂vj
− f(v)

∂f

∂vj

)
dv. (16)

The matrix Q in the collision operator is a scaled projection matrix

Qij(ξ) = |ξ|−1(δij − ξiξj/|ξ|2). (17)

Introducing the entropy functional S[f ] = −
∫
f ln fdv, the collision operator becomes

C[f ] =
∂

∂vi

(
−U if)

)
, (18)

where the velocity field is given by

U i(v) =

∫
f(v)Qij(v − v)

(
∂

∂vj
−

∂

∂vj

)
δS
δf
dv. (19)

This expression for the flow could be discretized directly. To reveal more structure, I
discretize the bracket behind the operator instead.
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Landau operator as a metric bracket:

The (single-species) Landau collision operator can be derived from the metric bracket

(A,B) =
1

2

∫∫
z,z

Γ(A,z,z) ·W(z,z) · Γ(B,z,z). (20)

The vector Γ(A,z,z) and the matrix W(z,z) are defined according to

Γ(A,z,z) =
∂

∂v

δA
δf

(z)−
∂

∂v

δA
δf

(z), (21)

W(z,z) = νδ(x− x)f(z)f(z)Q(v − v). (22)

Given an entropy functional S, the collisional evolution of functionals becomes

dA
dt

= (A,S) (23)

This result is one application of the so-called metriplectic dynamics. It has been
known for some time now [Morrison, (1984), doi:10.1016/0375-9601(84)90635-2]
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Discretizing the collisional bracket:

Take the following steps:

• Group together the degrees of freedom (Z;W ) = {(xp,vp;wp)}Np=1

• Introduce the discrete distribution fh =
∑
p wpδ(x− xp(t))δ(v − vp(t))

• Discretize the functional derivative ∂
∂v

δA[fh]
δf

∣∣∣
zp

= 1
wp

∂A(Z;W )
∂vp

• Approximate δ(x− x) in the bracket with an indicator function 1(p, p)

Substitute everything to the bracket and obtain a finite-dimensional bracket

(A,B)h =
1

2

∑
p,p

Γ(A, p, p) ·W(p, p) · Γ(B, p, p). (24)

The vector and the matrix in the discrete bracket are

Γ(A, p, p) =
1

wp

∂A(Z;W )

∂vp
−

1

wp

∂A(Z;W )

∂vp
(25)

W(p, p) = ν wpwp 1(p, p)Q(vp − vp) (26)

9



Continuous-time dynamics:

Given a regularized entropy functional Sε(Z;W ) = Sε[fh], assume the collisional
dynamics of arbitrary functions A(Z;W ) to obey

dA

dt
= (A,Sε)h. (27)

Specifically, an equation of motion for a particle is obtained by choosing A = vp

dvp

dt
=
∑
p

ν wp 1(p, p)Q(vp − vp) · Γ(Sε, p, p). (28)

The indicator function decides if the particles p and p are within the same collision cell.
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Continuous-time collisional invariants

Time evolution of momentum P =
∑
wpvp vanishes

dP

dt
= (P , Sε)h = 0 (29)

Time evolution of kinetic energy K =
∑
p wp

1
2
|vp|2 vanishes

dK

dt
= (K,Sε)h = 0 (30)

Time evolution of the regularized entropy functional is non-decreasing

dSε

dt
= (Sε, Sε)h ≥ 0 (31)

The momentum conservation follows directly from Γ(P , p, p) = 0, the energy
conservation from Γ(K, p, p) = vp − vp being in the null space of Q(vp − vp), and
the entropy behaviour from the positive-semidefinite nature of the matrix Q.
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Structure-preserving temporal
discretization



Discrete-time dynamics:

Introduce the so-called discrete gradient operator which is required to satisfy

(x− y) · ∇A(x,y) = A(x)−A(y) (32)

∇A(x,x) = ∇A(x) (33)

Modify the vector Γ(A, p, p) and the matrix W(p, p) to be evaluated with respect to
two different time instances via the utilization of the discrete gradient operator

Γn+1
n (A, p, p) =

1

wp

∂A

∂vp
(Zn,Zn+1;W )−

1

wp

∂A

∂vp
(Zn,Zn+1;W ) (34)

Wn+1
n (p, p) = ν wpwp 1(p, p)Q(Γn+1

n (K, p, p)) (35)

Take the discrete-time evolution of functions to be given by

An+1 −An

∆t
=

1

2

∑
p,p

Γn+1
n (A, p, p) ·Wn+1

n (p, p) · Γn+1
n (Sε, p, p) (36)

For a single particle this means

vn+1
p − vnp

∆t
=
∑
p

ν wp 1(p, p)Q(Γn+1
n (K, p, p)) · Γn+1

n (Sε, p, p) (37)
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Discrete-time collisional invariants

The evolution of momentum satisfies

Pn+1 − Pn

∆t
=

1

2

∑
p,p

Γn+1
n (P, p, p) ·Wn+1

n (p, p) · Γn+1
n (Sε, p, p) = 0 (38)

The evolution of kinetic energy satisfies

Kn+1 −Kn

∆t
=

1

2

∑
p,p

Γn+1
n (K, p, p) ·Wn+1

n (p, p) · Γn+1
n (Sε, p, p) = 0 (39)

The evolution of regularized entropy satisfies

Sn+1
ε − Snε

∆t
=

1

2

∑
p,p

Γn+1
n (Sε, p, p) ·Wn+1

n (p, p) · Γn+1
n (Sε, p, p) ≥ 0 (40)

These follow from the discrete gradient being exact for linear functions, meaning that
Γn+1
n (P , p, p) = 0, the fact that Γn+1

n (K, p, p) is in the null-space of the matrix
Q(Γn+1

n (K, p, p)), and that the matrix remains positive-semidefinite.
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A numerical example



Collisional relaxation of a double Maxwellian in 2D:

Let’s throw all the units out and choose an initial double-peaked distribution function

f(v, t = 0) =
1

4π

[
exp

(
−

(v − u1)2

2

)
+ exp

(
−

(v − u2)2

2

)]
, (41)

where the peaks of the Maxwellians are u1 = (−2, 1) and u2 = (0,−1). The energy
and momentum of this distribution are E = 2.5 and P = (−1, 0) respectively.

Let’s also choose the smoothing radial basis function ψε to be a Gaussian

ψε(v) =
1

2πε
exp

(
−
|v|2

2ε

)
, (42)

with ε = 0.64h1.98, the parameter h = 2L/
√
N , L = 10, and the total particle

number N = 602 = 3600. This setting now corresponds to the same test case as in
[Carrillo et al. (2020), doi:10.1016/j.jcpx.2020.100066].

Then initialize all particles by placing them in a regular grid in the domain
[−L,L]× [−L,L] and setting the weights to match the value of the initial distribution.
For evaluating the discrete entropy functional, use a 2-D Gauss-Hermite quadrature,
localizing a 6-by-6 mesh of quadrature points to the velocity position of each particle.

Finally, solve the non-linear system using fixed-point iteration and vectorize the
summation over particles on a GPU.
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Resulting temporal evolution:

v1 v1 v1

v2

v2

#1 #10 #30

#60 #120 #200

Figure 1: Illustrated evolution of ψε ∗ fh. The panels describe snapshots of the steps
#(1, 10, 30, 60, 120, 200) from left to right and from top down. The axes in the panels refer
to the velocity coordinates (v1, v2) in the domain [−L,L] × [−L,L] and the color indicates
the level sets of the distribution function from zero (deep blue) to the instantaneous maximum
values (bright yellow) for optimal visual contrast.
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Conservation properties recorded during the simulation:

Step # P1 P2 E

0 -1 0 2.5
1 -0.9999999999999982 -1.8617208789871285E-16 2.499999999999991
10 -0.9999999999999984 -4.263625043299246E-16 2.4999999999999907
30 -0.9999999999999981 -1.4125799054770516E-16 2.500000000000011
60 -0.9999999999999984 -1.2262462096082616E-15 2.5000000000000293
120 -0.9999999999999974 4.1795993749316196E-17 2.500000000000039
200 -0.9999999999999982 -4.68985202235761E-16 2.500000000000042

Table 1: Conservation of momentum and energy during the collisional relaxation of a double
Maxwellian. The step numbers correspond to the panels in Fig.1.

I think this is quite good!

16



Summary



Thanks for listening!

A summary of the presentation:

• Diffusion processes can be interpreted as compressible flow driven by entropy.

• The Landau collision operator can be expressed as a metric bracket.

• The metric bracket representing collisions can be discretized with particles.

• Discrete-time thermodynamics and momentum conservation is achieved via
utilization of the discrete gradient concept.

More details at Hirvijoki (2021), doi:10.1088/1361-6587/abe884, arXiv:2012.07187

Where to go next?

• Electrostatic gyrokinetics has a collisional bracket (Hirvijoki & Burby (2020)).

• Electromagnetic gyrokinetics has a collisional bracket (To Be Published (2022)).

• Discrete-time thermodynamics recovered but momentum conservation lacking.
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